Gauge symmetry and non-Abelian topological sectors in a geometrically constrained model on the honeycomb lattice.
نویسندگان
چکیده
We study a constrained statistical-mechanical model in two dimensions that has three useful descriptions. They are (i) the Ising model on the honeycomb lattice, constrained to have three up spins and three down spins on every hexagon, (ii) the three-color and fully packed loop model on the links of the honeycomb lattice, with loops around a single hexagon forbidden, and (iii) three Ising models on interleaved triangular lattices, with domain walls of the different Ising models not allowed to cross. Unlike the three-color model, the configuration space on the sphere or plane is connected under local moves. On higher-genus surfaces there are infinitely many dynamical sectors, labeled by a noncontractible set of nonintersecting loops. We demonstrate that at infinite temperature the transfer matrix admits an unusual structure related to a gauge symmetry for the same model on an anisotropic lattice. This enables us to diagonalize the original transfer matrix for up to 36 sites, finding an entropy per plaquette S/k{B} approximately 0.3661 ... centered and substantial evidence that the model is not critical. We also find the striking property that the eigenvalues of the transfer matrix on an anisotropic lattice are given in terms of Fibonacci numbers. We comment on the possibility of a topological phase, with infinite topological degeneracy, in an associated two-dimensional quantum model.
منابع مشابه
Classical topological order in Abelian and non-Abelian generalized height models.
We present Monte Carlo simulations on a new class of lattice models in which the degrees of freedom are elements of an Abelian or non-Abelian finite symmetry group G, placed on directed edges of a two-dimensional lattice. The plaquette group product is constrained to be the group identity. In contrast to discrete gauge models (but similar to past work on height models), only elements of symmetr...
متن کاملTopological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase trans...
متن کاملDistribution of Instanton and Monopole Clustering
We study the relation between the instanton distribution and the monopole loop length in the SU(2) gauge theory with the abelian gauge fixing. We measure the monopole current from the multiinstanton ensemble on the 16 lattice using the maximally abelian gauge. When the instanton density is dilute, there appear only small monopole loops. On the other hand, in the dense case, there appears one ve...
متن کاملTheory of topological edges and domain walls.
We investigate domain walls between topologically ordered phases in two spatial dimensions. We present a method which allows for the determination of the superselection sectors of excitations of such walls and which leads to a unified description of the kinematics of a wall and the two phases to either side of it. This incorporates a description of scattering processes at domain walls which can...
متن کاملساختار فاز میدانهای پیمانهای شبکهای دو بعدی U(N) با کنش مختلط
We study the phase structure of two dimensional pure lattice gauge theory with a Chern term. The symmetry groups are non-Abelian, finite and disconnected sub-groups of SU(3). Since the action is imaginary it introduces a rich phase structure compared to the originally trivial two dimensional pure gauge theory. The Z3 group is the center of these groups and the result shows that if we use one ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2007